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Using the Mori-Zwanzig memory function formalism with an hyperbolic secant form for the second 
order memory function, we calculate the dynamical structure factor of liquid Cesium at its melting point. 
The two parameters appearing in the memory function are determined froin the suni rules of the 
density-density cori-elation function. The required inputs are an interatomic potential and the corre- 
sponding pair correlation function. The calculations are pcrformed with the Price-Singwi-Tosi potential 
for liquid metals and the predicted results for S ( q .  co) show collective density excitations for wave numbers 
q < I k', in agreement with experimental results. 

K E Y  WORDS: Collectivc density excitations. dynamical structure factor, memory function, liquid 
cesi uin. 

1. INTRODUCTION 

Collective density excitations are characterized by the appearance of a distinct peak, 
at  a finite frequency (11, in the dynamical structure factor S(y,to) for small wave 
vectors y. Recently, inelastic neutron scattering experiments on liquid Cesium at its 
melting point have been and these show the existence of a well-defined 
collective peak for q < 1 ~ I which disappears for I/ > 1.2 .k '. These results are not 
very different from those for other liquid ~ n e t a l s ~ ~ ~ ~ ~ .  In order to better understand 
the behaviour of liquid alkali metals, we, i n  the present work, apply a theoretical 
procedure developed earlier",7 to calculate the dynamic structure factor for liquid 
Cesium. The procedure is based o n  the Mori-Zwanzig memory function formalism8 
and on the use of a secant hyperbolic form for the second-order memory function. 
The two parameters appearing in  the phenomenological mcmory function are deter- 
mined from the frequency suni rules of the density-density correlation function. This 
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96 K.  TANKESHWAR ct cil. 

approach has been quite successful in reproducing the essential features of S ( q ,  0 )  in 
both liquid Argon' and liquid Aluminium'. 

The only inputs in our theory are the second- and fourth-frequency moment sum 
rules of the longitudinal current-current correlation function. Expressions for these 
moments are known' and they involve the interaction potential and the static pair 
and triplet- correlation functions. To study liquid Cesium we use the Price-Singwi- 
Tosi (PST) pseudo-potential' and the pair distribution function g ( r )  generated by 
molecular dynamics". The Kirkwood superposition approximation is used to ap- 
proximate the triplet correlation function. It  has been demonstrated by Balacuni 
et a l 'O  and by Ranganathan rt a/" that the predicted results of the PST potential 
for the static structure factor S(q) ,  the diffusion coefficient and the peak position of 
the longitudinal current correlation function are in very good agreement with ex- 
perimental results. Our results of S ( q ,  Q), when compared with experimental data, 
indicate that our model is capable of predicting the correct collective density excita- 
tions in liquid Cesium. However, our model does not reproduce the correct small 
frequency behaviour for small wave vectors. 

In  section 2, we present the features of our theoretical model. The results and 
discussions are presented in section 3 .  Section 4 contains the summary and con- 
clusions. 

2. MODEL 

In the Mori-Zwanzig projector operator formalism, the density-density correlation 
function satisfies an integro-differential equation 

where M , ( q ,  t )  is the first-order relaxation kernel or memory function. Defining the 
Fourier-Laplace transform as 

we obtain from (1) 

where F ( y , t  = 0) = S(q) ,  the static structure factor, and /3 = (k ,T) -  
temperature. The dynamic structure factor S ( q ,  w )  is given by 

with T as the 
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COLLECTIVE DENSITY EXCITATIONS IN LIQUID CESIUM 97 

where F " ( q ,  (0) is the imaginary part of p ( q ,  (I)). I t  also follows from the projector 
operator formalism that M I  ( q ,  1 )  satisfies an  equation similar to ( I ) ,  the Fourier- 
Laplace transform o f  which is given by 

where &f2(q, m) is the second-order memory function. From (3) and (9 we obtain 

In our earlier workh.', we used a hyperbolic secant form for the relaxation kernel 
to study the dynamics of liquid Aluminium and dense Argon fluid. I t  was found that 
this procedure gave a reasonable description of the main dynamical features, as 
expressed by the dynamic structure factor. We wish to apply the same phenom- 
enological form of the memory function to study the dynamics of a liquid metal in 
the alkali series, liquid Cesium, for which recent experimental data on the dynamic 
structure factor have been published,. Thus we approximate the second-order mem- 
ory function by 

M,(q ,  t )  = LI .SPCh(ht)  (8) 

It is to be noted that this form of the memory function has a Gaussian behaviour for 
short times and an exponential behaviour at large times and in this sense is a reasonable 
and an appropriate expression to use in a study of the dynamics of a fluid for all times. 

In order to understand the origin of equation (S), we write Mori's equation for 
second- and third- order relaxation kernel in Fourier-Laplace space. These are given by 

Eliminating f i , ( q ,  0)) and taking the inverse transform of the resulting equation, we 
obtain 
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98 K.  TANKESHWAR etrrl. 

where h2 = M,(q, t = 0). It can be shown12 that under certain conditions, the above 
equation reduces to 

with a = M2(y, t = O), which is a well-known equation in nonlinear dynamics and 
whose solution is known to be a secant hyperbolic function, given by equation (8). 

The real and imaginary parts of G2(y,w)  are given by13 

fi ;(q,w)=-tanh (y)  - +- Y ( h l i ' o ) - Y ( q ) ]  - (14) 2h 

and 

where "(x) is the Euler Psi function. The two parameters a and b appearing in the 
memory function are determined by incorporating exactly the short time behaviour. 
We thus obtain 

a = 6, = wt(q)  - 6, 

and 

In the above equations, w,2(q) and Qf(4)  are the second and fourth frequency mo- 
ment sum rules of the longitudinal current-current correlation function. Expressions 
for these quantities have been given in our earlier work6. 

3. RESULTS AND DISCUSSION 

In order to calculate S(q,w) from (7), we require w,?(4) and Q;l(q). These depend on 
the interatomic potential m(r) and its first-, second-, and third-order derivatives, the 
pair distribution function g ( r )  and the triplet correlation function. For the potential, 
we have chosen the Price-Singwi-Tosi potential" which is known to describe the 
alkali series liquid metals reasonably well. The well-depth E of the potential is 
385.5 K and the position (r of the first zero of the potential is 4.761 A, corresponding 
to Cesium at its melting point (temperature T = 302 K and number density 
n = 0.0083 A ~ '). The derivatives of the potential were obtained using a five-point 
dilTerential formula. The pair distribution function g ( r )  was obtained in our earlier 
work" which was found to be in very good agreement with experimental results. 
For the triplet correlation function, which appears only in the expression for Q?(q). 
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we have used the Kirkwood superposition approximation. Previous ~ t u d i e s ’ ~ ” ~  
indicate that the errors introduced, in the calculation of the sum rules using this 
approximation, are minimal. The numerical integration was performed using Gauss 
quadrature. Results for w:(q) and Qf(q) are plotted in Figures 1 and 2 as a function 
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Figure I Variation of o f ( q )  of liquid Cesium a t  its melting point, with wave number q 
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Figure 2 Variation of R:(q) of liquid C e u u m  at its melting point, with wave number q 
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100 K. TANKESHWAR i'f a/. 

, l o t i  r--- 

Figure 3 Plots of the dynamic structure factor S(q,w) of liquid Cesium at its melting point as a function 
of w for q = a) 0.4, b) 0.6, c) 0.8 and d) l . O k l .  Our  results are shown as lines and experimental results as 
diamond symbols. 

of the wave vector q. The parameters a and b are then obtained from (16), which, 
when substituted in (14) and (15), yield the real and imaginary parts of the memory 
function f i2 (q ,w) .  The dynamical structure factor S ( q ,  o) is then calculated from (7). 
These results are shown in Figures 3 and 4 as a function of the frequency o, for 
various values of the wave number q. The q values in Fig. 3 are a) 0.4, b) 0.6, c) 0.8, 
and d) 1.0A-'. Our results are shown as lines and the experimental results are 
shown as diamond symbols. It is seen that there is a qualitative agreement except 
that our theory does not reproduce the peak at o = 0. But our model does repro- 
duce the position of the collective density excitation peak quite accurately for all the 
three lower values of q and the shoulder at q = 1.0A-l. The q values in Fig. 4 are 
a) 1.4, b) 1.6, c) 1.8, and d) 2.0A-'. In this region the agreement is quite good for all 
values of o. The collective peak no longer exists and out theory is able to reproduce 
this feature. 

Thus except for the behaviour near o = 0, for low values of q, our simple theory is 
able to account for the experimentally observed dynamic structure factor in liquid 
Cesium. It is to be expected that one needs at least a two-relaxation time model to 
reproduce the qualitative features of the dynamic structure factor at small values of q. 

4. SUMMARY AND CONCLUSIONS 

In this paper we have used a hyperbolic secant form for the second-order memory 
function to calculate the dynamic structure factor of liquid Cesium. The two 
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Figure4 Plots of the dynamic structure fiictor S (q ,wj  of liquid Cesium at 11s melting point as a function 
o f w  for q = a )  1.4, h )  1.6, cj 1.8 and d )  2.0A I .  O u r  results are  shown as  lines and  experimental results a s  
mond symbols. 

parameters in the memory function are determined from the frequency sum rules of 
the longitudinal current-current (or equivalently the density-density) correlation 
function. O u r  model predicts collective density excitations in liquid Cesium for q 
values less than or equal to l . O k ' ,  in complete agreement with the experimental 
data. The shortcoming of the model lies in the fact that the w = 0 peak is not 
reproduced correctly for small values of q. In order to get a better fit with experi- 
mental data, a two relaxation time model is needed as was demonstrated in a similar 
study of liquid Rubidium". However, it is gratifying to note that a single time 
relaxation model is able to reproduce the collective excitations in liquid Cesium. 
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